

ABSORBANCE ONE ENZYMATIC TEST KIT FOR THE DETERMINATION OF ACETIC ACID IN GRAPE JUICE AND WINE

PRODUCT

Product no. 4A100, for 60 tests, for in vitro use only.

CONTENTS

The kit includes the following reagents:

Reagent No.	Reagent	Preparation	Quantity	Stability
1	Buffer	Nil	33 mL	Reagents are stable for
2	Coenzymes (ATP/CoA/NAD)	Nil	6.6 mL	18 months at 4°C or until the kit's expiry date,
3	CS/MDH '	Swirl gently before use	0.4 mL	whichever occurs first
4	ACS	Swirl gently before use	0.7 mL	
5	Standard	Nil	3.3 mL	

The shelf life of Reagents 1 & 2 can be extended by placing aliquots in a freezer.

Do not freeze enzyme reagents 3 & 4. Failure to store reagents at the recommended temperature will reduce their shelf life. For the concentration of the Standard, please refer to the bottle label.

SAFETY

- Wear safety glasses
- Reagent 1 is mildly corrosive
- Do not ingest Buffer or Standard as they contain sodium azide as a stabilizer

PROCEDURE

Operating Parameters

Wavelength 340 nm

Cuvettes 1cm *micro-cuvette*, quartz, silica, methacrylate or polystyrene

Re-ordering code 2C890

Temperature 20 – 25°C Final volume in cuvette 1.615 mL

Zero against air without cuvette in light path

SAMPLE PREPARATION

Samples should be diluted with distilled water to ensure concentration in the assay solution is no more than 0.25 g/L. For most samples, a 1 in 5 dilution should be sufficient. Ideally, A_3 absorbance readings should be no greater than 1.20 absorbance units.

Undiluted red wines or highly coloured undiluted juice samples require decolourisation. To decolourise, add approximately 0.1 g of PVPP to 5 mL of sample in a test tube. Shake well for about 1 minute. Clarification is achieved by settling, or filtering through Whatman No. 1 filter paper.

Issued 26/02/2025 4A100 Page 1 of 2

SAMPLE ANALYSIS

a. Pipette the following volumes of reagents into the cuvettes:

Reagent	Blank assay	Standard assay	Sample assays
1. Buffer	500 μL	500 μL	500 μL
Distilled water	1000 µL	950 µL	950 µL
2. Coenzymes	100 μL	100 µL	100 µL
Sample or Standard	,	50 μĹ	50 μĹ

- b. Mix well by inversion and read absorbances, A₁.
- c. Pipette the following reagent into the cuvettes:

3. CS/MDH 5µL	5μL	5μL
---------------	-----	-----

d. Mix well by inversion and read absorbances, A2, after 3 minutes.

4. ACS	10µL	10μL	10uL	
T. A00	ΙΟμΕ	ινμ∟	ισμ∟	

e. Mix well by inversion and read absorbances, A₃, after 20 minutes.

CALCULATIONS*

These may be performed on the Absorbance one software directly, or using the calculation spreadsheets below*

1. Calculate the absorbance differences (A_2-A_1) and (A_3-A_1) for the Blank, Standard and Samples to give ΔA_1 and ΔA_2 :

Absorbance difference, $\Delta A_1 = A_2 - A_1$ Absorbance difference, $\Delta A_2 = A_3 - A_1$

2. Calculate the corrected absorbance for the samples and/or standard, ΔA_{ac}, using the formula:

$$\Delta A_{ac} = \left[(\Delta A_2)_{sample} - \underline{(\Delta A_1)^2_{sample}} \right] - \left[(\Delta A_2)_{blank} - \underline{(\Delta A_1)^2_{blank}} \right]$$

$$(\Delta A_2)_{sample}$$

$$(\Delta A_2)_{blank}$$

3. Calculate the Acetic acid concentration as follows:

Acetic Acid Concentration (g/L) = $\Delta A_{ac} \times 0.308 \times Dilution Factor$

*A calculation spreadsheet is available for download at the following locations in the absence of Absorbance one software.

Australia based users

https://winechek.com/calculation-worksheets/

Users outside of Australia

http://www.vintessential.com.au/resources/calculation-worksheets/

REFERENCES

1. Bergmeyer, H.U. *et al* 1984, *Methods of Enzymatic Analysis*, 3rd ed., vol. 6, pp. 639-645; Verlag Chemie, Weinheim.