

www.winechek.com support@winechek.com

TEST KIT FOR THE DETERMINATION OF PRIMARY AMINO ACID NITROGEN IN GRAPE JUICE

PRODUCT

Product no. 4A110, for 30 tests.

PRINCIPLE OF MEASUREMENT

During fermentation of grape juice, yeasts require a source of nitrogen as a nutrient.

Primary amino acids provide a portion of this nitrogen requirement. This test kit is suitable for measuring the Primary Amino Acid Nitrogen (PAAN) content in grape juice and must. In this kit Orthophthaldialdehyde (OPA) and N-acetyl-L-cysteine (NAC), in the presence of an alkaline buffer, bind with primary amino acids to form coloured complexes whose absorbance is measured at 335 nm by a spectrophotometer¹.

The **Yeast Assimilable Nitrogen** (YAN) content of the juice can be determined by adding this PAAN content to the Ammonia Nitrogen (AN) content.

AN can be determined by Vintessential Laboratories Enzymatic Analysis Kit 4A120.

CONTENTS

The kit includes the following reagents:

Descent No	Decaret	Dranavation	Ougatitu	Ctobility
Reagent No.	Reagent	Preparation	Quantity	Stability
1	Buffer	Ready to use	2 x 33 mL	Stable
2	NAC	Add 30 mL of distilled water & mix until dissolved	30 mL	>2 years at 4°C (6 months at 4°C once dissolved)
3	OPA	Ready to use	3.3 mL	>2 years at 4°C
4	Standard	Ready to use	3.3 mL	2 years at 4°C

Failure to store reagents at the recommended temperature will reduce their shelf life. For concentration of Standard, refer to label on bottle.

SAFETY

- Wear safety glasses
- Reagent 1 is alkaline

Do not ingest Standard as it contains sodium azide as a stabilizer

PROCEDURE

Operating Parameters

Wavelength 335nm

Cuvettes 1cm, quartz, silica, methacrylate or polystyrene

 $\begin{array}{ll} \text{Temperature} & 20-25^{\circ}\text{C} \\ \text{Final volume in cuvette} & 3.05 \text{ mL} \end{array}$

Zero against air with no cuvette in light path

Issued 07/10/2023 4A110 Page 1 of 2

SAMPLE PREPARATION

Samples should be refrigerated upon receipt or frozen until testing. Dilute juice or must samples with distilled water 1:1 if PAAN is likely to be in the range of 130-260mg/L. Dilution with distilled water 1:4 (x5 dilution factor) will allow the detection of PAAN up to 650mg/L.

Filter very cloudy samples. Highly coloured samples may require decolourisation. To decolourise, add approximately 0.1 g of PVPP to 5 mL of sample in a test tube. Shake well for about 1 minute. Clarification is achieved by settling or filtering through Whatman No. 1 filter paper. Avoid the use of activated charcoal.

SAMPLE ANALYSIS

a. Pipette the following volumes of reagents into the cuvettes:

Reagent	Blank assay	Standard assay	Sample assays
1. Buffer	2.00 mL (2000 µL)	2.00 mL (2000 µL)	2.00 mL (2000 µL)
2. NAC	0.90 mL (900 µL)	0.90 mL (900 µL)	0.90 mL (900 µL)
Distilled water	0.05 mL (50 µL)	, , ,	` ,
Sample or Standard		0.05 mL (50 μL)	0.05 mL (50 μL)

- b. Mix well and read absorbances, A₁.
- c. Pipette the following reagent into the cuvettes:

3. OPA	0.10 mL (100 μL)	0.10 mL (100 μL)	0.10 mL (100 µL)

d. Mix well and read absorbances, A2, after 10 minutes.

CALCULATIONS*

1. Calculate the Net Absorbance for the Blank, Sample and Standard:

Net Absorbance, $A_N =$

2. Calculate the Corrected Absorbance by subtracting the Net Absorbance for the Blank from the Net Absorbance for the Sample:

 $A_2 - A_1$

Sample Corrected Absorbance, A_C = Sample A_N – Blank A_N

- 3. Do the same for the Standard by substituting the Standard absorbances in place of the Sample absorbances.
- 4. Calculate the amount of Primary Amino Acid Nitrogen in the Samples using the formula below:

Primary Amino Acid Nitrogen (mg N/L) = AC x 130 x dilution factor

To calculate YAN (Yeast Assimilable Nitrogen), simply add Primary Amino Acid Nitrogen (PAAN) to the Ammonia Nitrogen (AN) calculated from kit 4A120:

YAN = PAAN + AN

*A calculation spreadsheet is available for download at: http://www.vintessential.com.au/certification/calculation-worksheets/

REFERENCES

1. Dukes, B.C. and Butzke, C.E. 1998, "Rapid determination of primary amino acids in grape juice using an o-phthaldialdehyde/N-acetyl-L-cysteine spectrophotometric assay", *Am.J.Enol.Vitic*, Vol 49, No.2, pp. 125-134.

© Copyright 2018, Winechek Laboratories. All rights reserved. No part of this publication may be copied or reproduced by any means without the written permission of Winechek Laboratories.

Issued 07/10/2023 4A110 Page 2 of 2