# ENZYMATIC TEST KIT FOR THE DETERMINATION OF CITRIC ACID IN GRAPE JUICE AND WINE 

## PRODUCT

Product no. 4A126, for 30 tests, for in vitro use only

## PRINCIPLE OF MEASUREMENT

Citric acid may be used at the final stages of winemaking to make minor adjustments to acid levels without affecting the bi-tartrate stability of the wine. It is determined enzymatically according to the following equations:

$$
\text { Citrate } \quad \rightarrow \quad \text { oxaloacetate }+ \text { acetate }
$$

In the presence of enzymes MDH and LDH, both the oxaloacetate and its decarboxylation product pyruvate, are reduced by NADH to malate and lactate respectively.

$$
\text { Oxaloacetate + pyruvate + NADH + } \mathrm{H}^{+} \quad \mathrm{MDH} / \mathrm{LDH} \text { malate + lactate + NAD+ }
$$

The amount of NADH oxidised is measured at 340 nm and is stoichiometrically related to the amount of citrate present.

CONTENTS
The kit includes the following reagents:

| Reagent ${ }^{\text {No. }}$ | Reagent | Preparation | Quantity | Stability |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Buffer | Nil | 33 mL | 1 year at $4^{\circ} \mathrm{C}$ |
| 2 | NADH | Add 1.7 mL of distilled water to either bottle as required, mix to dissolve | $2 \times 1.7 \mathrm{~mL}$ | 1 year at $4^{\circ} \mathrm{C}$ <br> ( 1 month at $4^{\circ} \mathrm{C}$ once diluted) |
| 3 | MDH/LDH | Mix gently by inversion before use | 0.7 mL | 1 year at $4^{\circ} \mathrm{C}$ |
| 4 | CL | Add 0.35 mL of distilled water to either bottle as required, mix to dissolve | $2 \times 0.35 \mathrm{~mL}$ | 1 year at $4^{\circ} \mathrm{C}$ <br> (2 months at $4^{\circ} \mathrm{C}$ once diluted) |
| 5 | Standard | Nil | 3.3 mL | 1 year at $4^{\circ} \mathrm{C}$ |

The shelf life of Reagent 1 can be extended by placing aliquots in a freezer.
Do not freeze reagents 2,3 or 4 .
Failure to store reagents at the recommended temperature will reduce their shelf life.
For concentration of Standard, refer to label on bottle.

## SAFETY

- Wear safety glasses
- Do not ingest Buffer or Standard as they contain sodium azide as a stabilizer


## PROCEDURE

Operating Parameters

Wavelength
Cuvettes
Temperature
Final volume in cuvette
Zero

340 nm
1 cm , quartz, silica, methacrylate or polystyrene $20-25^{\circ} \mathrm{C}$ 3.14 mL
against air without cuvette in light path

## SAMPLE PREPARATION

Samples should be diluted to ensure concentration in the assay solution is no more than $0.5 \mathrm{~g} / \mathrm{L}$. For most samples, a 1 in 2 dilution with distilled water should be sufficient.
For samples containing between $1 \mathrm{~g} / \mathrm{L}$ to $2.5 \mathrm{~g} / \mathrm{L}$ of citric acid, a 1 in 5 dilution would be appropriate. Ideally, $A_{1}$ should lie between $0.90-1.20$ absorbance units.

Red wines or highly coloured undiluted juice samples require decolourisation. To decolourise, add approximately 0.1 g of PVPP to 5 mL of sample in a test tube. Shake well for about 1 minute. Clarification is achieved by settling or filtering through Whatman No. 1 filter paper.

## SAMPLE ANALYSIS

a. Pipette the following volumes of reagents into the cuvettes:

| Reagent | Blank | Standard | Sample |
| :--- | :--- | :--- | :--- |
| 1. Buffer | $1.00 \mathrm{~mL}(1000 \mu \mathrm{~L})$ | $1.00 \mathrm{~mL}(1000 \mu \mathrm{~L})$ | $1.00 \mathrm{~mL}(1000 \mu \mathrm{~L})$ |
| 2. NADH | $0.10 \mathrm{~mL}(100 \mu \mathrm{~L})$ | $0.10 \mathrm{~mL}(100 \mu \mathrm{~L})$ | $0.10 \mathrm{~mL}(100 \mu \mathrm{~L})$ |
| $\quad$ Distilled water | $2.00 \mathrm{~mL}(2000 \mu \mathrm{~L})$ | $1.80 \mathrm{~mL}(1800 \mu \mathrm{~L})$ | $1.80 \mathrm{~mL}(1800 \mu \mathrm{~L})$ |
| Sample/Standard |  | $0.20 \mathrm{~mL}(200 \mu \mathrm{~L})$ | $0.20 \mathrm{~mL}(200 \mu \mathrm{~L})$ |
| 3. MDH/LDH | $0.02 \mathrm{~mL}(20 \mu \mathrm{~L})$ | $0.02 \mathrm{~mL}(20 \mu \mathrm{~L})$ | $0.02 \mathrm{~mL}(20 \mu \mathrm{~L})$ |

b. Mix well by gentle inversion and read absorbances, $A_{1}$, after 5 minutes.
c. Pipette the following reagent into the cuvettes:

| 4. CL | $0.02 \mathrm{~mL}(20 \mu \mathrm{~L})$ | $0.02 \mathrm{~mL}(20 \mu \mathrm{~L})$ | $0.02 \mathrm{~mL}(20 \mu \mathrm{~L})$ |
| :--- | :--- | :--- | :--- |

d. Mix well by gentle inversion and read absorbances, $\mathrm{A}_{2}$, after 25 minutes.

## CALCULATIONS*

1. Calculate the Net Absorbance for the Blank, Sample and Standard:

$$
\text { Net Absorbance, } A_{N}
$$

$$
=\quad A_{1}-A_{2}
$$

2. Calculate the Corrected Absorbance by subtracting the Net Absorbance for the Blank from the Net Absorbance for the Sample.

$$
\text { Sample Corrected Absorbance, } A_{C} \quad=\quad \text { Sample } A_{N}-\text { Blank } A_{N}
$$

3. Do the same for the Standard by substituting the Standard absorbance values in place of the Sample absorbance values.
4. Calculate the Citric acid concentration as follows;

$$
\text { Citric acid }(\mathrm{g} / \mathrm{L}) \quad=\quad \mathrm{Ac}_{\mathrm{c}} \times 0.4787 \times \text { Dilution Factor }
$$

*A calculation spreadsheet is available for download at:
http://www.vintessential.com.au/certification/calculation-worksheets/

## REFERENCES

1. OIV, 2018, Compendium of international methods of wine and must analysis. International Organisation of Vine and Wine, Vol 1: Paris, France, pp. OIV-MA-AS313-09.
© Copyright 2018, Vintessential Laboratories. All rights reserved. No part of this publication
may be copied or reproduced by any means without the written permission of Vintessential Laboratories.
