

www.winechek.com support@winechek.com

ENZYMATIC TEST KIT FOR THE DETERMINATION OF D-GLUCONIC ACID IN GRAPE JUICE AND WINE

PRODUCT

Product no. 4A130, for 30 tests, for in vitro use only.

PRINCIPLE OF MEASUREMENT

Free D-Gluconic acid (D-gluconate) is an important metabolite of *Botrytis cinerea*, and is the best marker to estimate the level of infection. D-glucono-δ-lactone is a cyclic ester of D-gluconic acid. It exists in equilibrium with the D-gluconic acid and can represent between 2-10% of the acid level in musts from botrytized grapes (1). D-Gluconic acid (D-gluconate) is phosphorylated to D-gluconate-6-phosphate by adenosine-5'-triphosphate (ATP) in the presence of the enzyme gluconate kinase with the simultaneous formation of adenosine-5'-diphosphate (ADP):

D-Gluconate + ATP \rightarrow gluconate-6-P + ADP

In the reaction catalyzed by 6-phosphogluconate dehydrogenase (6-PGDH), D-gluconate-6-phosphate is oxidatively decarboxylated by nicotinamideadenine dinucleotide phosphate (NADP) to ribulose-5-phosphate with the formation of reduced nicotinamide-adenine dinucleotide phosphate (NADPH):

Gluconate-6-P + NADP+ \rightarrow ribulose-5-P + NADPH + CO₂ + H+

The amount of NADPH formed in the above reaction is stoichiometrically related to the amount of D-gluconate. The increase in NADPH is measured at 340nm (2).

CONTENTS

The kit includes the following reagents:

Reagent No.	Reagent	Preparation	Quantity	Stability
1	Buffer	To activate the Buffer, add the contents of Reagent No.2	33 mL	18 months at 4°C (6 months once activated)
2	Coenzymes (ATP/NADP)	Coenzymes (ATP/NADP) and mix with inversion until completely dissolved.	0.2 g	18 months at 4°C
3	6-PGDH	Swirl gently before use	0.7 mL	18 months at 4°C
4	GNTK	Swirl gently before use	0.7 mL	18 months at 4°C
5	Standard	Nil	3.3 mL	18 months at 4°C

The shelf life of Reagent 1 & 2 can be extended by placing aliquots in a freezer.

Do not freeze enzyme reagents 3 & 4.

Failure to store reagents at the recommended temperature will reduce their shelf life.

For concentration of Standard, refer to label on bottle.

SAFETY

- Wear safety glasses
- Do not ingest Buffer or Standard as they contain sodium azide as a stabilizer

PROCEDURE

Operating Parameters

Wavelength 340 nm

Cuvettes 1cm, quartz, silica, methacrylate or polystyrene

Temperature 20 – 25°C Final volume in cuvette 3.04 mL

Zero against air without cuvette in light path

Issued 1-10-2023 4A130 Page 1 of 2

SAMPLE PREPARATION

Samples should be diluted with distilled water to ensure that the concentration in the assay solution is no more than 0.6 g/L. For the majority of wine samples, a 1 in 10 dilution is satisfactory. As a general guide, further dilution is required if the absorbance reading is greater than 1 absorbance unit. Samples may be used directly without decolourisation. Turbid samples should be filtered through Whatman No. 1 filter paper.

To determine the total D-gluconic acid present in juice and wines, D-glucono-δ-lactone must first be hydrolysed by adjusting the sample pH to 10-11 with 2M KOH and incubating for 5-10mins at room temperature. Adjust the pH to 7.5-8.0 with 1M HCl before assaying. The D-glucono-δ-lactone is converted to free D-gluconic acid and is determined together with the original free D-gluconic acid (total D-gluconic acid).

SAMPLE ANALYSIS

a. Pipette the following volumes of reagents into the cuvettes:

Reagent	Blank assay	Standard assay	Samples
1. Buffer/Coenzymes	1.00 mL (1000 µL)	1.00 mL (1000 µL)	1.00 mL (1000 µL)
Distilled water	2.00 mL (2000 µL)	1.90 mL (1900 µL)	1.90 mL (1900 µL)
3. 6-PGDH	0.02 mL (20µL)	0.02 mL (20µL)	0.02 mL (20µL)
Sample or Standard		0.10 mL (100 µL)	0.10 mL (100 μL)

- b. Mix well and read absorbances, A₁, after approximately 5 minutes.
- c. Pipette the following reagent into the cuvettes:

4. GNTK	0.02 mL (20µL)	0.02 mL (20µL)	0.02 mL (20µL)

d. Mix well and read absorbances, A2, once reaction is complete (approximately 20 minutes).

CALCULATIONS*

1. Calculate the Net Absorbance for the Blank, Sample and Standard:

Net Absorbance, $A_N = A_2 - A_1$

2. Calculate the Corrected Absorbance by subtracting the Net Absorbance for the Blank from the Net Absorbance for the Sample.

Sample Corrected Absorbance, $A_C = Sample A_N - Blank A_N$

- 3. Do the same for the Standard by substituting the Standard absorbances in place of the Sample absorbances.
- 4. Calculate the D-Gluconic acid concentration as follows;

D-Gluconic Acid Concentration (g/L) = $A_C \times 0.9465 \times D$ ilution Factor

*A calculation spreadsheet is available for download at:

http://www.vintessential.com.au/certification/calculation-worksheets/

REFERENCES

- 1. Barbe, J.C. *et al* 2002, Journal of Agricultural and Food Chemistry 11/2002; 50 (22) :pp. 6408-6412
- 2. Bergmeyer, H.U. *et al* 1984, *Methods of Enzymatic Analysis*, 3rd ed., vol. 6, pp. 220-227; Verlag Chemie, Weinheim.

© Copyright 2018, Vintessential Laboratories. All rights reserved. No part of this publication may be copied or reproduced by any means without the written permission of Vintessential Laboratories.

Issued 1-10-2023 4A130 Page 2 of 2