

www.winechek.com support@winechek.com

ENZYMATIC TEST KIT FOR THE DETERMINATION OF L-MALIC ACID IN GRAPE JUICE AND WINE

PRODUCT

Product no. 4A160, for 30 tests, for in vitro use only.

PRINCIPLE OF MEASUREMENT

L-malic acid is found in grape juice and wine and is determined enzymatically according to the following equations:

L-malate + NAD⁺ ↔ Oxaloacetate

Oxaloacetate + NADH + H⁺

L-malic acid is oxidised by nicotinamide adenine dinucleotide (NAD) to oxaloacetate using L-malate dehydrogenase (MDH) enzyme as a catalyst. The equilibrium does not favour formation of oxaloacetate and so oxaloacetate is removed by a trapping enzyme. The amount of NADH formed is measured at 340 nm and is stoichiometrically related to the amount of L-malate consumed. In this method, glutamate oxaloacetate transaminase (GOT) is used as the trapping enzyme. In the presence of L-glutamate, the oxaloacetate is irreversibly converted to L-aspartate.

 $\begin{array}{rcl} & & & GOT \\ Oxaloacetate + L-glutamate & \rightarrow & L-aspartate + \alpha-ketoglutarate \end{array}$

CONTENTS

The kit includes the following reagents:

Reagent No.	Reagent	Preparation	Quantity	Stability
1	Buffer	Nil	33 mL	2 years at 4°C
2	NAD	Add 6.6 mL of distilled water & mix by inversion to dissolve	6.6 mL	2 years at 4°C as powder (once diluted: 1 year at 4°C, 2 years at -20 °C)
3	GOT	Swirl gently before use	0.4 mL	2 years at 4°C
4	MDH	Swirl gently before use	0.4 mL	2 years at 4°C
5	Standard	Nil	3.3 mL	2 years at 4°C

The shelf life of Reagents 1 & 2 can be extended by placing aliquots in a freezer. **Do not freeze** enzyme reagents 3 & 4.

Failure to store reagents at the recommended temperatures will reduce their shelf life. For concentration of Standard (reagent 5), please refer to the label on the bottle.

SAFETY

Wear safety glasses
Reagent 1 is mildly corrosive
Do not ingest Buffer or Standard as they contain sodium azide as a stabilizer

PROCEDURE Operating Parameters Wavelength Cuvettes Temperature Final volume in cuvette Zero

340 nm 1cm, quartz, silica, methacrylate or polystyrene 20 – 25°C 2.22 mL against air without cuvette in light path

SAMPLE PREPARATION

Samples should be diluted with distilled water to ensure that the concentration in the assay solution is no more than 0.4 g/L. For samples with less than 2 g/L of L-Malic acid, a 1 in 5 dilution is sufficient. As a general guide, further dilution is required if the absorbance reading at A_2 is greater than 1 absorbance unit.

Undiluted red wines or highly coloured undiluted juice samples will require decolourisation. To decolourise, add approximately 0.1 g of PVPP to 5 mL of sample in a test tube. Shake well for about 1 minute. Clarification is achieved by settling, centrifugation, or by filtering through Whatman No. 1 filter paper.

SAMPLE ANALYSIS a. Pipette the following volumes of reagents into the cuvettes:

Reagent	Blank assay	Standard assay	Samples
1. Buffer	1.00 mL(1000 µL)	1.00 mL(1000 µL)	1.00 mL (1000 µL)
Distilled water	1.00 mL(1000 µL)	0.90 mL (900 µL)	0.90 mL (900 µL)
2. NAD	0.20 mL (200 µL)	0.20 mL (200 µL)	0.20 mL (200 µL)
3. GOT	0.01 mL (10 µL)	0.01 mL (10 µL)	0.01 mL (10 µL)
Sample or Standard		0.10 mL (100 µL)	0.10 mL (100 µL)

b. Mix well by gentle inversion and read absorbances, A1, after 3 minutes.

c. Pipette the following reagent into the cuvettes:

4. MDH 0.01 mL (10μL) 0.01 mL (10μL) 0.01 mL (10μ	μL)
---	-----

d. Mix well by gentle inversion and read absorbances, A₂, after 10 minutes.

CALCULATIONS*

1. Calculate the Net Absorbance (A_N) for the Blank, Standard, and sample assays:

Net Absorbance, A_N = $A_2 - A_1$

2. Calculate the Corrected Absorbance (Ac) for the Standard assay by subtracting the Net Absorbance for the Blank from the Net Absorbance for the Standard:

Standard Corrected Absorbance, Ac = Standard A_N – Blank A_N

3. Calculate the Corrected Absorbance (A_c) for the samples by subtracting the Net Absorbance for the Blank from the Net Absorbance for the sample:

Sample Corrected Absorbance, $A_c = Sample A_N - Blank A_N$

4. Calculate the L-Malic acid concentration for the Standard and samples as follows:

L-Malic Acid Concentration (g/L)	=	A _c x 0.4725 x Dilution Factor
----------------------------------	---	---

*A calculation spreadsheet is also available for download at: http://www.vintessential.com.au/certification/calculation-worsheets/

5. Precision (where x is the L-malic acid concentration in the sample in g/l): Repeatability r = 0.03 + 0.034x Reproducibility R = 0.05 + 0.071x

REFERENCES

1. OIV, 2018, Compendium of international methods of wine and must analysis. *International Organisation of Vine and Wine*, Vol 1: Paris, France, pp. OIV-MA-AS313-11.

© Copyright 2018, Vintessential Laboratories. All rights reserved. No part of this publication may be copied or reproduced by any means without the written permission of Vintessential Laboratories.