

Manufactured by Winechek Pty Ltd
1/22 Hightech Place Lilydale, Vic 3140
support@winechek.com

ABN 93604651845 www.winechek.com

KIT DE ANÁLISIS ENZIMÁTICO PARA LA DETERMINACIÓN DE GLUCOSA Y FRUCTOSA EN JUGO DE UVA Y EN VINO

PRODUCTO

Producto no. 4A140, permite 30 análisis, sólo para el uso in vitro.

PRINCIPIO

La glucosa y la fructosa son los azúcares principales que se encuentran en jugo de uva y en vino, y se determinan enzimáticamente de acuerdo a las siguientes ecuaciones:

HK

 $\begin{array}{lll} \text{Glucosa} + \text{ATP} & \longleftrightarrow & \text{Glucosa-6-fosfato} + \text{ADP} \\ \text{Fructosa} + \text{ATP} & \longleftrightarrow & \text{Fructosa-6-fosfato} + \text{ADP} \end{array}$

La glucosa y la fructosa reaccionan con trifosfato de adenosina (ATP) en la presencia de la enzima hexocinasa (HK), y forman glucosa-6-fosfato (G6P) y fructosa-6-fosfato (F6P).

G6PDH

La G6P se oxida por el dinucleótido fosfato de nicotinamida y adenina (NADP) en Gluconato-6-fosfato, usando la enzima Glucosa-6-fosfato-deshidrogenasa (G6PDH) como catalizador. La cantidad de NADPH que se forma se mide a 340nm y se relaciona estequiométricamente con la cantidad de glucosa que se consume.

PGI

Luego, se agrega la enzima fosfoglucosa isomerasa (PGI) y se convierte F6P a G6P. La G6P que se forma, reacciona con NADP, y el NADPH que se determina se relaciona estequiométricamente a la cantidad de fructosa en la muestra.

CONTENIDO

El kit incluye los siguientes reactivos:

Reactivo No.	Reactivo	Preparación	Cantidad	Estabilidad
1	Buffer	Agregue contenido de reagente número 2, coenzimas; mezcle para disolver	33 mL	18 meses a 4°C (6 meses combinados una vez)
2	Coenzimas (ATP/NADP)	Ninguna	0,2 g	18 meses a 4°C
3	G6PDH/HK	Agitar suavemente antes de usar	0,7 mL	18 meses a 4°C
4	PGI	Agitar suavemente antes de usar	0,7 mL	18 meses a 4°C
5	Estándar	Ninguna	3,3 mL	18 meses a 4°C

La vida útil del Reactivo no. 1 & 2 se puede extender si se ponen alícuotas en el congelador. No congelar los reactivos de enzima 3 & 4. No mantener los reactivos a la temperatura recomendada reduce su vida útil. Para la concentración del Estándar, refiérase a la etiqueta de la botella.

PROCEDIMIENTOS DE SEGURIDAD

- Usar gafas de seguridad
- No ingerir el Buffer o el Estándar porque contienen azida de sodio que actúa como estabilizador.

PROCEDIMIENTO

Abertura Común Longitud de Onda

ongitud de Onda 340 nm

Cubetas 1cm, cuarzo, silicio, metacrilato o poliestireno

Temperatura $20 - 25^{\circ}$ C Volumen final en cubeta 3,04 mL

Cero contra aire sin cubeta en el paso de luz

Número 10.12.2024 4A140 Página 1 de 2

Manufactured by Winechek Pty Ltd
1/22 Hightech Place Lilydale, Vic 3140
support@winechek.com

ABN 93604651845 www.winechek.com

PREPARACIÓN DE LA MUESTRA

Las muestras deben diluirse con agua destilada para asegurar que la concentración en la solución de ensayo no sea más de 1,0 g/L. Con la mayoría de las muestras de vinos secos, una dilución de 1 en 10 es suficiente. Los vinos semidulces pueden necesitar una dilución de 1 en 20 ó 1 en 50, mientras que los vinos de postre y fortificados pueden necesitar una dilución de 1 en 100 ó más.

Como guía general, se requiere una dilucion adicional si la lectura final de Absorbancia A3 es superir a 1.20 unidades de absorbancia deben superar 1,20 unidad de absorbancia. Se pueden usar las muestras directamente sin decoloración. Filtrar las muestras turbias en papel de filtro Whatman No. 1.

ANÁLISIS DE LA MUESTRA

a. Pipetear los siguientes volúmenes de reactivos en las cubetas:

Reactivo	Blanco	Estándar	Muestra	
1. Buffer	1,00 mL (1000 μL)	1,00 mL (1000 μL)	1,00 mL (1000 μL)	
Agua Destilada	2,00 mL (2000 μL)	1,90 mL (1900 μL)	1,90 mL (1900 μL)	
Muestra / Estándar		0,10 mL (100 μL)	0,10 mL (100 μL)	

- b. Mezclar bien y leer las absorbancias, A1, después de 3 minutos.
- c. Pipetear los siguientes reactivos en las cubetas:

3. G6PDH/HK 0,02 mL (20μL) 0,02 mL (20μL) 0,02 mL (20μL)	
--	--

- d. Mezclar bien y leer las absorbancias, A2, después de 10 minutos.
- e. Pipetear el siguiente reactivo en las cubetas:

4. PGI	0.02 mL (20μL)	0.02 mL (20μL)	0.02 mL (20μL)

f. Mezclar bien y leer las absorbancias, A3, después de 10 minutos

CALCULOS*

1. Calcular la absorbancia de la muestra para la glucosa:

Absorbancia de Glucosa, A_G = $(A_2 - A_1)$ - $(BlancoA_2 - BlancoA_1)$

2. Calcular la concentración de Glucosa como sigue:

Concentración de Glucosa (g/L) = A_G x 0,8637 x Factor de dilución

- 3. Hacer lo mismo para el Estándar, sustituyendo las absorbancias del Estándar en el lugar de las absorbancias de las Muestras.
- 4. Calcular la Absorbancia de la Muestra para la Fructosa:

Absorbancia de Fructosa, A_F = $(A_3 - A_2)$ - $(BlancoA_3 - BlancoA_2)$

5. Calcular la concentración de Fructosa como se muestra a continuacion:

Concentración de Fructosa (g/L) = A_F x 0,8694 x Factor de Dilución

- 6. Sumar los resultados de la Glucosa y la Fructosa para obtener la concentración total de azúcar.
- 7. Precisión (donde x es la concentración de glucosa en la muestra en g/l):

Repetibilidad r = 0.056 x Reproducibilidad R = 0.12 + 0.076 x

* Una hoja de cálculo está disponible para descargar en: www.vintessential.com.au/certification/calculation-worksheets

REFERENCIAS

 "Compendium of International Methods of Wine and Must Analysis" OIV, Vol 1, 2006, MA-E-AS311-02-GLUFRU5, p4

© Derechos de autor 2024, **Winechek Pty Ltd** Reservados todos los derechos. Ninguna parte de esta publicación, protegida por los derechos de autor, puede ser reproducida o copiada en ninguna forma sin el permiso previo de Winechek Pty Ltd.

Número 10.12.2024 4A140 Página 2 de 2